

 Navigation

 	
 index

 	alda stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/alda/checkouts/stable/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/alda/checkouts/stable/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	alda stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.4.

 _static/file.png

etymology.html

 Navigation

 		
 index

 		alda stable documentation »

Etymology

Alda was originally named after Yggdrasil [http://en.wikipedia.org/wiki/Yggdrasil], the venerated tree of Norse legend which held aloft the mythical nine worlds. Dave thought it to be a fitting name, imagining the realm of sound/music to be an immense tree bearing numerous branches which could represent genres, tonalities, paradigms, etc.

By incredible coincidence, the company Dave works for [http://www.adzerk.com] uses Norse mythology as a theme for naming their software projects, and there was a working project called Yggdrasil. Dave was never totally happy with Yggdrasil as the name for his music programming language (it’s a mouthful), so he this as an opportunity to rename it. Alda is Quenya [http://en.wikipedia.org/wiki/Quenya] for “tree.”

There is a plethora of music software out there, but most of these
programs tend to specialize or “reside” in at most one or two different realms
– FamiTracker [http://famitracker.com] and MCK [http://ppmck.wikidot.com/what-is-ppmck] are specifically for the creation of NES
music; puredata [http://puredata.info], Csound [http://www.csounds.com] and ChucK [http://chuck.cs.princeton.edu] are mostly useful for
experimental electronic music; Lilypond [http://www.lilypond.org], Rosegarden [http://www.rosegardenmusic.com], and
MuseScore [http://musescore.org] can be used for more than just classical music, but
their standard notation interface suggests a preference for classical music;
Guitar Pro [http://www.guitar-pro.com] is targeted toward the creation of guitar-based music. Why
not have one piece of software that can serve as the Great Tree that supports
all of these existing worlds?

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/down-pressed.png

inline-clojure-code.html

 Navigation

 		
 index

 		alda stable documentation »

Inline Clojure Code

Alda allows score-writers to program in Clojure [http://www.clojure.org] by writing inline Clojure expressions alongside Alda code.

From the perspective of Alda’s parser, anything between parentheses is considered a Clojure expression. You can write Clojure expressions anywhere within in Alda score, alongside Alda syntax.

Clojure expressions are evaluated in the context of the alda.lisp namespace, which gives you first-class access to the alda.lisp DSL. For example, out of the box you can do things like:

(note (pitch :c))

(do (volume 50) (octave 6))

(chord (note (pitch :c))
 (note (pitch :e))
 (note (pitch :g)))

Evaluating strings of Alda code

The alda-code function provides a convenient way to parse and evaluate a string of Alda code, in the context of inline Clojure code. This gives you the power to construct strings of Alda code using Clojure, and then splice that Alda code into your score.

Here is an example where we repeat a 3-note phrase 7 times by building the string "e f g e f g e f g e f g e f g e f g e f g " and evaluating it:

cello:
 o3
 (alda-code (apply str (repeat 7 "e8 f g ")))

Here is another example, where we play 5 random notes out of the C major scale:

bassoon:
 o3
 (alda-code (apply str (repeatedly 5 #(str (rand-nth "abcdefg") \space))))

Scheduling custom events

You might initially think that each Clojure expression is not evaluated until the point in time where it is situated in the score, but this is actually not the case. Clojure expressions are evaluated in score-order, but this happens very quickly during the brief period of time before the score is played. When the score is evaluated, essentially all it does is queue up a bunch of events (mostly notes being played), and it is during this period that your Clojure code will run.

It is still possible, however to schedule custom events to occur at a specific time in the score, thanks to the schedule function.

piano:
 (schedule #(println "playing c")) c8
 (schedule #(println "playing d")) d
 (schedule #(println "playing e")) e
 (schedule #(println "playing f")) f
 (schedule #(println "playing g")) g2

schedule takes a function as its argument. The function that you give it can be any Clojure function that takes zero arguments.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/down.png

search.html

 Navigation

 		
 index

 		alda stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/plus.png

variables.html

 Navigation

 		
 index

 		alda stable documentation »

Variables

Variables aren’t implemented yet. More information to come.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/ajax-loader.gif

alda-repl.html

 Navigation

 		
 index

 		alda stable documentation »

Alda REPL

Alda comes with an interactive REPL (Read-Eval-Play Loop) that you can use to play around with its syntax. After each line of code that you enter into the REPL prompt, you will hear the result.

To start the Alda REPL, run:

alda repl

At the REPL prompt, you can either enter Alda code, or use one of the available built-in commands, which start with a colon.

For a list of available commands, enter :help.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

alda-now.html

 Navigation

 		
 index

 		alda stable documentation »

alda.now

alda.now, when coupled with alda.lisp, provides a way to work with Alda scores and play music programmatically within a Clojure application.

alda.now provides a play! macro, which evaluates the body, finds any new note events that were added to the score, and plays them.

Example usage of alda.now in a Clojure application:

(require '[alda.lisp :refer :all])
(require '[alda.now :refer (set-up! play!)])

(score*)
(part* "upright-bass")

; This is optional. If left out, Alda will set up the MIDI synth the first
; time you tell it to play something.
(set-up! :midi)

(play!
 (octave 2)
 (note (pitch :c) (duration (note-length 8)))
 (note (pitch :d))
 (note (pitch :e))
 (note (pitch :f))
 (note (pitch :g) (duration (note-length 4))))

Of note, alda.repl uses alda.now to play the score the user is creating during the REPL session, so you could think of alda.repl as an alda.now “sample project.”

Another thing to note is that alda.now does not load the FluidR3 MIDI soundfont like the CLI version of Alda does by default. In the near future, Alda may be packaged with FluidR3 and alda.now could provide a simple helper method to load FluidR3. Currently, FluidR3 is loaded dynamically by the Alda CLI.

If you are interested in using FluidR3 or other MIDI soundfonts with Alda in a Clojure application, you can use midi.soundfont [https://github.com/daveyarwood/midi.soundfont].

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/up.png

cram.html

 Navigation

 		
 index

 		alda stable documentation »

CRAM

Crazy Rhythm Alda Magic (C.R.A.M.) is an alternative way of representing rhythms in Alda. It can be useful for n-tuplets and polyrhythms.

The idea is that you’re “cramming” a bunch of notes into a single note duration. For example, you may want 5 notes “crammed” into the duration of a half note:

{c d e f g}2

As with notes in general, leaving the duration off of the end of a cram will use the last-used note duration. In the example below, for instance, the notes between the brackets are crammed into the duration of a whole note, since that was the last-specified duration.

c1 e {g a b} > c

You can also include note-lengths on the notes inside of a cram, which will have the effect of giving the longer notes more time, relative to the time allotted for the entire cram. The duration of the entire cram does not change.

{c d e}2 {c2 d4 e} {c1 d4 e}

By default, the first note of each cram expression is a quarter note.

Crams can be nested. Each internal cram will take up the appropriate amount of space within the cram containing it.

{c e {g a b}}1 c

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/up-pressed.png

voices.html

 Navigation

 		
 index

 		alda stable documentation »

Voices

Voices provide a way to subdivide an instrument into its own separate parts, which play simultaneously. This can be useful for polyphonic instruments, that is, instruments that can play more than one note at a time, e.g. guitar, piano.

Example

V1: c d e f g1
V2: e f g a b1
V3: g a b > c d1

V0: c e g > c2.

Each voice is its own sequence of note events. The first note/rest in each voice starts at the same time, like the notes in a chord. Whereas a chord bumps forward the current offset by the shortest note duration in the chord, after a group of voices, the current offset is that of the longest voice in the group. V0: signals the end of a voice grouping and a return to using a single voice – the first note placed after V0: will happen after all voices in the group have finished.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

instance-and-group-assignment.html

 Navigation

 		
 index

 		alda stable documentation »

Instance and Group Assignment

The way Alda assigns instances is slightly complicated, but ultimately lends itself to intuitive score-writing for the end user.

		Just the name of the instrument, e.g. piano: – this is a call to piano, which works because piano is a stock instrument that Alda knows about. The first time this call is made, the instance is registered as “piano 1.”

 piano: c c c c c # piano 1
 cello: g g g g g # cello 1
 piano: e e e e e # still piano 1
 cello: c c c c c # still cello 1

If you then call a different instrument, say cello:, a new instrument instance is created (“cello 1”). Then, if you switch back to piano:, Alda will see that piano is already registered, and you’ll be appending music events to the same instance, piano 1. A new instance of an instrument is created whenever a stock instrument is called that is not already in use.

		Multiple instruments can be combined into groups like this: trumpet/trombone/tuba:. Any music events following such a call will be applied to each instrument in the group. The instances are assigned just like with single instruments – new instances will be created for any instrument that does not already exist, and if an instance of the instrument does exist, the music data will be appended to that instance. (It’s worth noting that the instrument instances in a group will have the same music events, but they don’t necessarily have to start at the same time – each instance will start the music events whenever it’s finished with its own preceding events.)

 trumpet: c4 c8 c c2 # trumpet 1
 trumpet/trombone/tuba: c d e f g1 # trumpet 1 (still), trombone 1 and tuba 1

		Instruments can be nicknamed, and in fact this is necessary if you want to have two or more instances of the same instrument:

 flute "bill": c d e f g2. # flute 1
 flute "bob": e f g a b2. # flute 2

A new instance of an instrument is created whenever a stock instrument is called with any nickname, either as part of a group or not.

 flute: g a b > c d2. # flute 1
 flute "bill": c d e f g2. # flute 2
 flute "bob": e f g a b2. # flute 3

Another example: If there is already a clarinet 1 and there is already a cello 1 nicknamed ‘thor’, then the call thor/clarinet 'band': will refer to the same instance of cello (cello 1, ‘thor’), but a new clarinet instance (clarinet 2) because a nickname, ‘band’ is being given to this group, and ‘clarinet’ refers to the stock instrument, not any particular named instance of clarinet. On the other hand, thor/clarinet: in the same scenario will refer to cello 1 and clarinet 1, the same instances that were already in use.

Example 1:

 clarinet: g g g g2. # clarinet 1
 cello "thor": g b d > g2. # cello 1
 thor/clarinet "band": g d < b g2. # cello 1 (still) and clarinet 2

Example 2:

 clarinet: g g g g2. # clarinet 1
 cello "thor": g b d > g2. # cello 1
 thor/clarinet: g < d b g2. # cello 1 (still) and clarinet 1 (still)

Again, the key thing to remember is that a new instance of an instrument is created whenever a stock instrument is called with any nickname, either as part of a group or not.

Generally, I would recommend that score writers use the names of the stock instruments instead of nicknames if there is only one instance of each instrument – and if there is more than one, assign nicknames to each instrument the first time it is called. (If you do it this way, you don’t have to understand how any of the above works :smiley_cat:)

 © Copyright 2016.
 Created using Sphinx 1.3.4.

offset.html

 Navigation

 		
 index

 		alda stable documentation »

Offset

Alda places notes chronologically by assigning each note an offset. There are two types of offset: absolute and relative. Absolute offset expresses the number of ms from the beginning of the score. Relative offset expresses the number of ms after a marker.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

notes.html

 Navigation

 		
 index

 		alda stable documentation »

Notes

Alda’s syntax for notes is heavily inspired by MML [http://www.nullsleep.com/treasure/mck_guide].

Components

Octave

Western music theory divides pitches into repeating groups of 12 notes, e.g. (ascending) c c# d d# e f f# g g# a a# b (next octave) c c# d, etc. The combination of the letter pitch (e.g. C#) and the octave determines the frequency of the note in Hz. Octave is expressed as a number, typically between 1 and 7, corresponding to scientific pitch notation [http://en.wikipedia.org/wiki/Scientific_pitch_notation]. For example, middle C and A440 are both in octave 4, which is the default octave in Alda. Just like in MML, the octave is set separately from the notes themselves - i.e. it’s not “attached to” or “part of” the note, rather, each note looks at the current octave in order to determine its pitch.

You can set the octave two ways:

o5 sets the octave to octave 5. Any integer can follow o.

< decreases current octave by 1. > increases current octave by 1.

Duration

Duration in Alda (as in MML) is typically expressed in note lengths from standard music notation, in number form. 4 is a quarter note, 2 is a half note, 1 is a whole note, etc.

Any number of dots can be added to a note duration, which has the same effect as in standard music notation - it essentially adds half of the note duration to the total duration of the note.

e.g.

2 = half note, 2 beats
2. = dotted half note, 3 beats (2 + 1)
2.. = double-dotted half note, 3-1/2 beats (2 + 1 + 1/2)

Note durations can also be added together using the tie syntax, ~. (4~4 = two quarter notes tied together, 2 beats total.)

Alda keeps track of both the current octave and the current default note duration as notes are processed sequentially in a score. Each time a note duration is specified, that duration becomes the new default note duration. Each note that follows, when no note duration is specified, will have the default note duration. At the beginning of each instrument part, the default octave is 4 and the default note duration is 4 (i.e. a quarter note, 1 beat).

Advanced Rhythms

		A special feature of Alda is that you can use non-standard numbers as note durations. For example, 6 is a note that lasts 1/6 of a measure in 4/4 time. In standard notation, there is no such thing as a “sixth note,” but this note length would be commonly expressed as one note in a quarter note triplet; in Alda, a “6th note” doesn’t necessarily need to be part of a triplet, however, which raises interesting rhythmic possibilities.

		Alda also has an alternate way of specifying rhythms called CRAM.

		Note lengths can also be expressed in milliseconds and seconds, which can optionally be mixed and matched with standard note lengths:

 c350ms # a C note lasting 350 milliseconds
 d2s # a D note lasting 2 seconds
 e2s~200ms # an E note lasting 2 seconds + 200 milliseconds
 f300ms~4. # an F note lasting 300 milliseconds + a dotted quarter note

Letter pitch

A note in Alda is expressed as a letter from a-g, any number of accidentals (optional), and a note duration (also optional).

Flats and sharps will decrease/increase the pitch by one half step, e.g. C + 1/2 step = C#. Flats and sharps are expressed in Alda as - and +, and you can have multiple sharps or multiple flats, or even combine them, if you’d like. e.g. c++ = C double-sharp = D.

As an alternative to placing flats and sharps on every note that needs them, you may prefer to set the key signature, which will add the necessary sharps/flats to any note that needs them in order to match the key. See below for an example of using a key signature.

To overwrite the flat/sharp specified by a key signature, you can include an accidental, i.e. - or + to make the note flat or sharp. You can also override the key signature and force a note to be natural with =, i.e. c= is a C natural regardless of what key you are in.

Example

The following is a 1-octave B major scale, ascending and descending, starting in octave 4:

o4 b4 > c+8 d+ e f+ g+ a+ b4
a+8 g+ f+ e d+ c+ < b2.

Here is the same example, using a key signature in order to avoid having to include all of the sharps:

(key-signature "f+ c+ g+ d+ a+")
o4 b4 > c8 d e f g a b4
a8 g f e d c < b2.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

attributes.html

 Navigation

 		
 index

 		alda stable documentation »

Attributes

An attribute defines some quality of how an instrument (or multiple instruments) plays its notes.

Under the hood, attributes are implemented as inline clojure code.

Setting the Value of an Attribute

Just like setting octaves, setting an attribute will take effect for all of an instrument’s upcoming notes, until that attribute is changed again. (In fact, octave is also a settable attribute.)

Different attributes take different kinds of values. A lot of the time, the value is a number between 0 and 100, but this is not always the case.

Examples

(volume 50)

(quant 85)

(octave :up)

(tempo 240)

(key-signature "f+ c+ g+")

See below for more information about the different kinds of attributes that are available to you when writing a score.

Getting the Current Value of an Attribute

To obtain the current value of an attribute for the current instrument(s), prefix the name of the attribute with a dollar sign ($).

You typically will not need to do this when writing a score, but it may be helpful when writing an Alda score via alda.lisp, or when doing complicated things with inline Clojure code.

As a simple example, this will print the current value of the volume of the piano instance:

piano:
 (println ($volume))
 c d e f g

Caveat: When using this syntax in a part with multiple instruments (e.g. piano/trumpet: (prn ($volume))), only one of the instruments’ values will be returned. Tread with caution!

Per-Instrument vs. Global

By default, an attribute change event is only applied to the instrument(s) that you’re currently working with. For instance, in a score with four instruments:

violin "violin-1":
 o4 f2 g4 a b-2 a

violin "violin-2":
 o4 c2 e4 f f2 f

viola:
 o3 a2 > c4 c d2 c

cello:
 o3 f2 c4 f < b-2 > f

Changing an attribute will only affect the instrument(s) whose part you are currently editing:

violin "violin-1":
 o4 f2 g4 a b-2 a

violin "violin-2":
 o4 c2 e4 f f2 f

viola:
 o3 a2 > c4 c d2 c

cello:
 (volume 75)
 o3 f2 c4 f < b-2 > f

To change an attribute globally (i.e. for every instrument in the score), add an exclamation mark (!) after the name of the attribute:

violin "violin-1":
 (tempo! 80)
 o4 f2 g4 a b-2 a

violin "violin-2":
 o4 c2 e4 f f2 f

viola:
 o3 a2 > c4 c d2 c

cello:
 o3 f2 c4 f < b-2 > f

Attributes can also be set globally at the beginning of a score, before you start writing out any instrument parts. The attributes will still be set for every instrument.

(tempo! 80)

violin "violin-1":
 o4 f2 g4 a b-2 a

violin "violin-2":
 o4 c2 e4 f f2 f

viola:
 o3 a2 > c4 c d2 c

cello:
 o3 f2 c4 f < b-2 > f

List of Attributes

duration

		Abbreviations: (none)

		Description: The length that a note will have, if not specified. For example, c4 is explicitly a quarter note; c will have a note-length equal to the value of the instrument’s duration attribute. (Note that this attribute is more of an implementation detail, as it is called implicitly whenever you specify a note-length for a note. You will probably never need to use this attribute directly.)

		Value: a number of beats (e.g. 2.5, which represents a dotted half note).

		Initial Value: 1 (i.e. a quarter note)

key-signature

		Abbreviations: key-sig

		Description: a set of sharp or flat symbols [https://en.wikipedia.org/wiki/Key_signature] to be applied to certain notes by default when the note doesn’t include accidentals. For example, if the key signature contains G-sharp, then a note g will become G-sharp by default, unless an accidental is placed after the note, i.e. g- (G-flat) or g (G natural).

		Value: either:
		a map of letters (as keywords) to lists of accidentals for that letter, e.g. {:f [:sharp] :c [:sharp] :g [:sharp]},

		a string like "f+ c+ g+", or

		a vector like [:a :major] or [:e :flat :minor]

		Initial Value: {} (an empty map, signifying no flats/sharps will be applied for any letter)

octave

		Abbreviations: (none)

		Description: The octave of a note. (Note that Alda also has built-in syntax for setting specific octaves, e.g. o5, and moving up > or down < octaves.)

		Value: either a number representing an octave in scientific pitch notation [https://en.wikipedia.org/wiki/Scientific_pitch_notation], or the keyword :up or :down to move up or down by one from the current octave.

		Initial Value: 4

panning

		Abbreviations: pan

		Description: How far left/right the note is panned in your speakers.

		Value: a number from 0-100 representing the panning from hard left (0) to hard right (100). 50 is center.

		Initial Value: 50

quantization

		Abbreviations: quant, quantize

		Description: The percentage of a note’s full duration that is heard. Setting lower quantization values translates into putting more space between notes, making them sound more staccato, whereas setting higher values translates into putting less space between notes, making them sound more legato.

		Value: a number between 0 and 100

		Initial Value: 90

tempo

		Abbreviations: (none)

		Description: How fast or slow notes are played. This value is used in combination with the length of a note to determine how long to play it in milliseconds.

		Value: a number representing a tempo [https://en.wikipedia.org/wiki/Tempo] in beats per minute (BPM)

		Initial Value: 120

track-volume

		Abbreviations: track-vol

		Description: The overall volume of an instrument. For MIDI instruments, this corresponds to track volume, as opposed to velocity. Typically, you would set track-volume once (if at all) at the beginning of the score, and then use volume for finer-grained control over volume between notes. (When in doubt, just use volume!)

		Value: a number between 0 and 100

		Initial Value: 78.7 (this number comes from 100/127, which is the default track volume for MIDI, at least on the JVM)

volume

		Abbreviations: vol

		Description: How loud or soft a note is. For MIDI instruments, this corresponds to the velocity of each note, which has to do with not only how loud the note is, but also how strongly the note is played. The details of this vary from instrument to instrument; often, it has an effect on the sharpness of the attack at the beginning of the note.

		Value: a number between 0 and 100

		Initial Value: 100

 © Copyright 2016.
 Created using Sphinx 1.3.4.

chords.html

 Navigation

 		
 index

 		alda stable documentation »

Chords

A chord is a collection of notes which all start at the same [[offset]], i.e. they all start at the exact same time. In Alda, a chord is expressed as notes with slashes in between them: c/e/g

It’s acceptable to have octave changes in between the notes of a chord, which allows for chords spanning multiple octaves: c/g/>c/e/g

The notes in a chord can all be different lengths, in which case, the next note event after the chord will happen after the shortest note in the chord. This makes it easy to have chords with shifting tones, e.g.: c1~1/>c/<e4 f g f e1 (also, note that, just like with sequential notes, each note duration becomes the default for all notes that follow - both C notes in this chord are 2 whole notes long).

Alda also allows you to use rests in a chord. Because the next note event after a chord will start after the shortest note/rest in the chord, this can be useful for writing melodies entwined with chords, e.g. c1/e/g/r4 b e g

 © Copyright 2016.
 Created using Sphinx 1.3.4.

scores-and-parts.html

 Navigation

 		
 index

 		alda stable documentation »

Scores and Parts

The top level of a piece of music written in Alda is the score. A score consists of any number of instrument parts, each of which have their own note events, which occur simultaneously.

Alda is designed to be flexible about how a score is organized. For the same piece of music, a composer can choose to write each instrument part’s notes from beginning to end before moving on to the next instrument part (something like ex. 1), or alternate between the instrument parts, organizing the score by section rather than by part (ex. 2).

Note: Here is a list of instruments available to you when writing a score in Alda.

Ex. 1

trumpet:
o4 c d e f g a b > c d e f g a b > c

trombone:
o3 e f g a b > c d e f g a b > c d e

Ex. 2

trumpet: o4 c d e f g a b > c
trombone: o3 e f g a b > c d e

trumpet: d e f g a b > c
trombone: f g a b > c d e

Under the hood, Alda processes a score sequentially, keeping track of information about each instrument, including the instrument’s volume, tempo, duration, offset, and octave. The nice thing about this is that, when switching to another instrument and then switching back, you don’t have to worry about changing the volume, tempo, octave, etc. back to what they were when you were last using the instrument - Alda keeps track of that for you.

Instrument groups

It’s possible in Alda to use the same note events for multiple instruments at once by grouping them, e.g.:

trumpet/trombone: c d e f g f e d c

Keep in mind that Alda is still keeping track of each instrument’s volume, tempo, octave, offset, etc. separately, which means it is up to the composer to ensure that the instruments are playing in sync, if that’s what the composer wants. In ex. 3, the trumpet plays some repeated D notes at the start of the score, then an ascending D minor scale; the trombone also plays the D minor scale, however it starts at the beginning of the score, so it beats the trumpet to the punch. Ex. 4 shows a way to remedy this situation, in cases where the really want both instruments playing in unison. Ex. 5 shows another way to achieve the same effect using markers.

Ex. 3

trumpet: d d d d d d d d

not in sync, trombone starts earlier
trumpet/trombone: d e f g a b- > c d

Ex. 4

trumpet: d d d d d d d d
trombone: r1~1 # (rest for 8 beats)

in sync
trumpet/trombone: d e f g a b- > c d

Ex. 5

trumpet:
d d d d d d d d %scaleTime

trumpet/trombone:
@scaleTime d e f g a b- > c d

Alda chooses not to force instrument parts to sync up when used as a group in order to allow composers the freedom to experiment with multiple instruments playing the same notes in different ways. For example, you could give the instruments different tempos and/or note durations and have them play the same notes:

Ex. 6

violin: (tempo 100)
viola: (tempo 112)
cello: (tempo 124)

violin/viola/cello: e f g e f g e f g e f g e f g

Nicknames

So far, we’ve talked about using different types of instruments at the same time. But what if we want more than one of the same instrument? Let’s say we’re writing a piece of music for two oboes. We obviously can’t refer to them both as “oboe”; how will we tell them apart? That’s where nicknames come in.

You can give a nickname to an instrument by putting it in double quotes after the name of the instrument:

oboe "oboe-1":
 c8 d e f g2

Now oboe-1 refers to our first oboe. From now on, to tell oboe #1 what to do, we must refer to it as oboe-1, not oboe. oboe can now be used to create a second oboe:

oboe "oboe-2":
 e8 f g a b2

You can also nickname a group of instruments:

oboe-1/oboe-2 "oboes":
 > c1

The details of how Alda creates and assigns instrument instances are slightly complicated, but you should only really need to know this simple rule of thumb: if you need to use more than one of the same instrument (or if you’d like to assign a nickname to a group of instruments), assign a nickname the first time each instrument (or the group) is used, and then use that nickname from then on to refer to that instrument/group.

Acceptable Nicknames

Instrument nicknames must adhere to the following rules:

		They must be at least 2 characters long.

		The first two characters must be letters (either uppercase or lowercase).

		After the first two characters, they may contain any combination of:
		letters (upper- or lowercase)

		digits 0-9

		any of the following characters: _ - + ' ()

 © Copyright 2016.
 Created using Sphinx 1.3.4.

alda-lisp.html

 Navigation

 		
 index

 		alda stable documentation »

alda.lisp

Under the hood, Alda transforms input (i.e. Alda code) into Clojure code which, when evaluated, produces a map of score information, which the audio component of Alda can then use to make sound. This Clojure code is written in a DSL called alda.lisp. See below for an example of alda.lisp code and the result of evaluating it.

Parsing demo

You can use the parse task to parse Alda code into alda.lisp (-l/--lisp) and/or evaluate it to produce a map (-m/--map) of score information.

$ alda parse --lisp --map -f test/examples/hello_world.alda

(alda.lisp/score
 (alda.lisp/part
 {:names ["piano"]}
 (alda.lisp/note
 (alda.lisp/pitch :c)
 (alda.lisp/duration (alda.lisp/note-length 8)))
 (alda.lisp/note (alda.lisp/pitch :d))
 (alda.lisp/note (alda.lisp/pitch :e))
 (alda.lisp/note (alda.lisp/pitch :f))
 (alda.lisp/note (alda.lisp/pitch :g))
 (alda.lisp/note (alda.lisp/pitch :f))
 (alda.lisp/note (alda.lisp/pitch :e))
 (alda.lisp/note (alda.lisp/pitch :d))
 (alda.lisp/note
 (alda.lisp/pitch :c)
 (alda.lisp/duration (alda.lisp/note-length 2 {:dots 1})))))

{:events
 #{{:offset 500.0,
 :instrument "piano-y50tv",
 :volume 1.0,
 :track-volume 0.7874015748031497,
 :midi-note 64,
 :pitch 329.6275569128699,
 :duration 225.0}
 {:offset 2000.0,
 :instrument "piano-y50tv",
 :volume 1.0,
 :track-volume 0.7874015748031497,
 :midi-note 60,
 :pitch 261.6255653005986,
 :duration 1350.0}
 {:offset 1750.0,
 :instrument "piano-y50tv",
 :volume 1.0,
 :track-volume 0.7874015748031497,
 :midi-note 62,
 :pitch 293.6647679174076,
 :duration 225.0}
 {:offset 1000.0,
 :instrument "piano-y50tv",
 :volume 1.0,
 :track-volume 0.7874015748031497,
 :midi-note 67,
 :pitch 391.99543598174927,
 :duration 225.0}
 {:offset 0,
 :instrument "piano-y50tv",
 :volume 1.0,
 :track-volume 0.7874015748031497,
 :midi-note 60,
 :pitch 261.6255653005986,
 :duration 225.0}
 {:offset 1250.0,
 :instrument "piano-y50tv",
 :volume 1.0,
 :track-volume 0.7874015748031497,
 :midi-note 65,
 :pitch 349.2282314330039,
 :duration 225.0}
 {:offset 750.0,
 :instrument "piano-y50tv",
 :volume 1.0,
 :track-volume 0.7874015748031497,
 :midi-note 65,
 :pitch 349.2282314330039,
 :duration 225.0}
 {:offset 250.0,
 :instrument "piano-y50tv",
 :volume 1.0,
 :track-volume 0.7874015748031497,
 :midi-note 62,
 :pitch 293.6647679174076,
 :duration 225.0}
 {:offset 1500.0,
 :instrument "piano-y50tv",
 :volume 1.0,
 :track-volume 0.7874015748031497,
 :midi-note 64,
 :pitch 329.6275569128699,
 :duration 225.0}},
 :markers {:start 0},
 :instruments
 {"piano-y50tv"
 {:octave 4,
 :current-offset {:offset 3500.0},
 :config {:type :midi, :patch 1},
 :duration 3.0,
 :volume 1.0,
 :last-offset {:offset 2000.0},
 :id "piano-y50tv",
 :quantization 0.9,
 :tempo 120,
 :panning 0.5,
 :current-marker :start,
 :stock "midi-acoustic-grand-piano",
 :track-volume 0.7874015748031497}}}

$ alda parse --lisp -c 'cello: c+'

(alda.lisp/score
 (alda.lisp/part {:names ["cello"]}
 (alda.lisp/note (alda.lisp/pitch :c :sharp))))

 © Copyright 2016.
 Created using Sphinx 1.3.4.

list-of-instruments.html

 Navigation

 		
 index

 		alda stable documentation »

List of Instruments

Currently, only General MIDI instruments are supported. In the future, we plan to add waveform synthesis [https://github.com/alda-lang/alda/issues/100] so that you will be able to use sine/square/triangle/sawtooth waves as well as complex synthesizers built from waveforms.

Any of the instrument names below, as well as their aliases, can be used as instruments in an Alda score, e.g.:

midi-harpsichord: c8 d e f g a b > c

MIDI Instruments

These directly correspond to the instruments in the General MIDI sound set [http://www.midi.org/techspecs/gm1sound.php]. They are grouped here by patch group according to the MIDI spec.

Aliases are in parentheses after the instrument’s name.

Note that some of these aliases may be replaced in the future with non-MIDI instruments, e.g. sampled or waveform instruments. To ensure that your scores will always use specifically MIDI instruments, you can use the midi- prefixed names.

Piano

		midi-acoustic-grand-piano (midi-piano, piano)

		midi-bright-acoustic-piano

		midi-electric-grand-piano

		midi-honky-tonk-piano

		midi-electric-piano-1

		midi-electric-piano-2

		midi-harpsichord (harpsichord)

		midi-clavi (midi-clavinet, clavinet)

Chromatic Percussion

		midi-celesta (celesta, celeste, midi-celeste)

		midi-glockenspiel (glockenspiel)

		midi-music-box (music-box)

		midi-vibraphone (vibraphone, vibes, midi-vibes)

		midi-marimba (marimba)

		midi-xylophone (xylophone)

		midi-tubular-bells (tubular-bells)

		midi-dulcimer (dulcimer)

Organ

		midi-drawbar-organ

		midi-percussive-organ

		midi-rock-organ

		midi-church-organ (organ)

		midi-reed-organ

		midi-accordion (accordion)

		midi-harmonica (harmonica)

		midi-tango-accordion

Guitar

		midi-acoustic-guitar-nylon (midi-acoustic-guitar, acoustic-guitar, guitar)

		midi-acoustic-guitar-steel

		midi-electric-guitar-jazz

		midi-electric-guitar-clean (electric-guitar-clean)

		midi-electric-guitar-palm-muted

		midi-electric-guitar-overdrive (electric-guitar-overdrive)

		midi-electric-guitar-distorted (electric-guitar-distorted)

		midi-electric-guitar-harmonics (electric-guitar-harmonics)

Bass

		midi-acoustic-bass (acoustic-bass, upright-bass)

		midi-electric-bass-finger (electric-bass-finger, electric-bass)

		midi-electric-bass-pick (electric-bass-pick)

		midi-fretless-bass (fretless-bass)

		midi-bass-slap

		midi-bass-pop

		midi-synth-bass-1

		midi-synth-bass-2

Strings (and Timpani, for some reason)

		midi-violin (violin)

		midi-viola (viola)

		midi-cello (cello)

		midi-contrabass (string-bass, arco-bass, double-bass, contrabass, midi-string-bass, midi-arco-bass, midi-double-bass)

		midi-tremolo-strings

		midi-pizzicato-strings

		midi-orchestral-harp (harp, orchestral-harp, midi-harp)

		midi-timpani (timpani)

Ensemble

		midi-string-ensemble-1

		midi-string-ensemble-2

		midi-synth-strings-1

		midi-synth-strings-2

		midi-choir-aahs

		midi-voice-oohs

		midi-synth-voice

		midi-orchestra-hit

Brass

		midi-trumpet (trumpet)

		midi-trombone (trombone

		midi-tuba (tuba)

		midi-muted-trumpet

		midi-french-horn (french-horn)

		midi-brass-section

		midi-synth-brass-1

		midi-synth-brass-2

Reed

		midi-soprano-saxophone (midi-soprano-sax, soprano-saxophone, soprano-sax)

		midi-alto-saxophone (midi-alto-sax, alto-saxophone, alto-sax)

		midi-tenor-saxophone (midi-tenor-sax, tenor-saxophone, tenor-sax)

		midi-baritone-saxophone (midi-baritone-sax, midi-bari-sax, baritone-saxophone, baritone-sax, bari-sax)

		midi-oboe (oboe)

		midi-english-horn (english-horn)

		midi-bassoon (bassoon)

		midi-clarinet (clarinet)

Pipe

		midi-piccolo (piccolo)

		midi-flute (flute)

		midi-recorder (recorder)

		midi-pan-flute (pan-flute)

		midi-bottle (bottle)

		midi-shakuhachi (shakuhachi)

		midi-whistle (whistle)

		midi-ocarina (ocarina)

Synth Lead

		midi-square-lead (square, square-wave, square-lead, midi-square, midi-square-wave)

		midi-saw-wave (sawtooth, saw-wave, saw-lead, midi-sawtooth, midi-saw-lead)

		midi-calliope-lead (calliope-lead, calliope, midi-calliope)

		midi-chiffer-lead (chiffer-lead, chiffer, chiff, midi-chiffer, midi-chiff)

		midi-charang (charang)

		midi-solo-vox

		midi-fifths (midi-sawtooth-fifths)

		midi-bass-and-lead (midi-bass+lead)

Synth Pad

		midi-synth-pad-new-age (midi-pad-new-age, midi-new-age-pad)

		midi-synth-pad-warm (midi-pad-warm, midi-warm-pad)

		midi-synth-pad-polysynth (midi-pad-polysynth, midi-polysynth-pad)

		midi-synth-pad-choir (midi-pad-choir, midi-choir-pad)

		midi-synth-pad-bowed (midi-pad-bowed, midi-bowed-pad, midi-pad-bowed-glass, midi-bowed-glass-pad)

		midi-synth-pad-metallic (midi-pad-metallic, midi-metallic-pad, midi-pad-metal, midi-metal-pad)

		midi-synth-pad-halo (midi-pad-halo, midi-halo-pad)

		midi-synth-pad-sweep (midi-pad-sweep, midi-sweep-pad)

Synth Effects

		midi-fx-rain (midi-fx-ice-rain, midi-rain, midi-ice-rain)

		midi-fx-soundtrack (midi-soundtrack)

		midi-fx-crystal (midi-crystal)

		midi-fx-atmosphere (midi-atmosphere)

		midi-fx-brightness (midi-brightness)

		midi-fx-goblins (midi-fx-goblin, midi-goblins, midi-goblin)

		midi-fx-echoes (midi-fx-echo-drops, midi-echoes, midi-echo-drops)

		midi-fx-sci-fi (midi-sci-fi)

Ethnic

		midi-sitar (sitar)

		midi-banjo (banjo)

		midi-shamisen (shamisen)

		midi-koto (koto)

		midi-kalimba (kalimba)

		midi-bagpipes (bagpipes)

		midi-fiddle

		midi-shehnai (shehnai, shahnai, shenai, shanai, midi-shahnai, midi-shenai, midi-shanai)

Percussive

		midi-tinkle-bell (midi-tinker-bell)

		midi-agogo

		midi-steel-drums (midi-steel-drum, steel-drums, steel-drum)

		midi-woodblock

		midi-taiko-drum

		midi-melodic-tom

		midi-synth-drum

		midi-reverse-cymbal

Sound Effects

		midi-guitar-fret-noise

		midi-breath-noise

		midi-seashore

		midi-bird-tweet

		midi-telephone-ring

		midi-helicopter

		midi-applause

		midi-gunshot (midi-gun-shot)

 © Copyright 2016.
 Created using Sphinx 1.3.4.

repeats.html

 Navigation

 		
 index

 		alda stable documentation »

Repeats

Notes, sequences and other types of events can be repeated any number of times, by simply appending * and a number. Putting whitespace between the event and the * is optional, as is putting whitespace between the * and the number of repeats.

For example:

piano:
 # repeating single notes
 c *4 c2 *2

 # repeating a sequence containing notes and an octave change
 [c8 d e >]*3

 © Copyright 2016.
 Created using Sphinx 1.3.4.

sequences.html

 Navigation

 		
 index

 		alda stable documentation »

Sequences

In an Alda score, a series of notes or other events can be captured as a sequence by enclosing it in square brackets:

[c d e f c1/e/g]

On its own, this is nothing special; the score is still essentially the same, and sounds the same. However, capturing a sequence of events allows you to do special things like repeat the sequence several times in a row, or store it in a variable and use it later.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

installation.html

 Navigation

 		
 index

 		alda stable documentation »

Installation

Mac OS X / Linux

The executable file alda in the bin directory of this repository is a standalone executable script that can be run from anywhere. It will retrieve the latest release version of Alda and run it, passing along any command-line arguments you give it.

		To install Alda, simply copy the alda script from this repo into any directory in your $PATH, e.g. /bin or /usr/local/bin:

 curl https://raw.githubusercontent.com/alda-lang/alda/master/bin/alda -o /usr/local/bin/alda && chmod +x /usr/local/bin/alda

		This script requires the Clojure build tool Boot [http://www.boot-clj.com], so you will need to have that installed as well. Mac OS X users with Homebrew [https://github.com/homebrew/homebrew] can run brew install boot-clj to install Boot. Otherwise, see here [https://github.com/boot-clj/boot#install] for more details about installing Boot.

Once you’ve completed the steps above, you’ll be able to run alda from any working directory. Running the command alda by itself will display the help text.

Updating Alda

Alda comes in two pieces: the Alda library (the part that does all the work) and the alda start script.

The start script will rarely need to be updated, but if you ever do need to get the latest version, you can do so by running the following command:

alda script > /usr/local/bin/alda

The Alda library will keep itself updated on your computer each time you run it.

Windows

The alda script doesn’t seem to work for Windows users. If you’re a Windows power user, please feel free to weigh in on this issue [https://github.com/alda-lang/alda/issues/48]. Until we have that sorted out, there is a workaround:

		Install Boot [https://github.com/boot-clj/boot#install].

		Clone this repo and cd into it.

		You can now run boot alda -x "<cmd> <args>" while you are in this directory.

Examples:

		boot alda -x repl to start the Alda REPL

		boot alda -x "play --code 'piano: c d e f g'"

Caveats:

		It’s more typing.

		It only works if you’re in the Alda repo folder.

		Unlike the alda script, running the boot alda task will not automatically update Alda; you will have to do so manually by running git pull.

		If the command you’re running is longer than one word, you must wrap it in double quotes – see the examples above.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

logging.html

 Navigation

 		
 index

 		alda stable documentation »

Logging

Alda uses timbre [https://github.com/ptaoussanis/timbre] for logging. Every note event, attribute change, etc. is logged at the DEBUG level, which can be useful for debugging purposes.

The default logging level is WARN, so by default, you will not see these debug-level logs; you will only see warnings and errors.

To override this setting (e.g. for development and debugging), you can set the TIMBRE_LEVEL environment variable.

To see debug logs, for example, you can do this:

export TIMBRE_LEVEL=debug

When running tests via boot test, the log level will default to debug unless TIMBRE_LEVEL is set to something else.

 © Copyright 2016.
 Created using Sphinx 1.3.4.

markers.html

 Navigation

 		
 index

 		alda stable documentation »

Markers

Markers can be placed and referenced at any point during a score, and in any instrument part. e.g. %chorus will place a marker called “chorus” at the current offset, and then using @chorus at any point will set the current offset to that of the “chorus” marker.

Acceptable Marker Names

Marker names must adhere to the following rules:

		They must be at least 2 characters long.

		The first two characters must be letters (either uppercase or lowercase).

		After the first two characters, they may contain any combination of:
		letters (upper- or lowercase)

		digits 0-9

		any of the following characters: _ - + ' ()

 © Copyright 2016.
 Created using Sphinx 1.3.4.

rests.html

 Navigation

 		
 index

 		alda stable documentation »

Rests

Rests work exactly like notes, except it’s just the letter r (with an optional duration following the same rules as notes). When Alda encounters a rest, it waits for the duration of the rest before placing the next note. (Under the hood, it’s just bumping forward the current offset without creating any note events.)

 © Copyright 2016.
 Created using Sphinx 1.3.4.

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

